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Abstract In this paper, we find projective plane models of the modular curves X0(N )

by constructing maps from X0(N ) to the projective plane using modular forms. We
use eta-quotients of weight 12.We find those eta-quotients in M12(Γ0(N ))which have
maximal order of vanishing at infinity.
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1 Introduction

Let Γ0(N ) be the congruence subgroup

Γ0(N ) =
{
γ ∈ SL2(Z) : γ ≡

(∗ ∗
0 ∗

)
(mod N )

}
.

This group acts on the extended complex upper half plane H∗ = H ∪ Q ∪ {∞}, with
H = {z ∈ C : �z > 0}, by linear fractional transformations

γ.z = az + b

cz + d
, γ =

(
a b
c d

)
∈ Γ0(N ).
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123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11139-017-9983-5&domain=pdf
http://orcid.org/0000-0003-3976-4166


I. Kodrnja

The quotient space of this group action is called a modular curve, and we denote it by
X0(N ) i.e.,

X0(N ) = Γ0(N ) \ H∗.

The set X0(N ) can be endowed with a complex structure and it is a compact Riemann
surface. It is of interest in number theory to embed this Riemann surface into the
projective or affine space and find its defining equations. The curve that is an image
of such an embedding is called a model of the modular curve X0(N ).

The field of rational functions over C of X0(N ) is generated by j and j (N ·). The
minimal polynomial of j (N ·) overC( j) is called the classicalmodular polynomial and
it gives the canonical plane model for X0(N ), [14]. However, this polynomial is hard
to compute and has enormous coefficients so it is not of practical use. There are few
methods for finding different models for the modular curve X0(N ), [5,10,11,15,16].
Onemethod uses the canonical embedding ofRiemann surfaces in the projective space,
[5]. Using the connection of modular forms on Γ0(N ) (or in general on any Fuchsian
group of the first kind) with the differentials on X0(N ), G. Muić has searched for
models of X0(N ) by constructing maps into the projective space using modular forms
of arbitrary weight, [10,11]. We use this method to construct models of X0(N ) into
the projective plane P2, as in [11], using eta-quotients.

There are always two eta-quotients that are modular forms of weight 12 for Γ0(N )

for every N : Ramanujan delta function Δ and its rescaling ΔN = Δ(N ·). We search
for a third function so that the map in the projective plane defined with these three
modular forms is a birational equivalence.

In [4] it is proved that the unique normalized modular form of weight 12 for Γ0(N )

with maximal order of vanishing at the cusps ∞ is an eta-quotient when the genus of
Γ0(N ) equals zero. In Sect. 4 we generalize this claim and find those numbers N for
which the unique normalized modular form of weight 12 for Γ0(N ) whose only zero
occurs at infinity is an eta-quotient.

Theorem 1 The unique normalized modular form of weight 12 for Γ0(N ) which only
vanishes at infinity is an eta-quotient if and only if N belongs to one of the sets S1, S2,
or S3 defined by

S1 = {
pn : p ∈ {2, 3, 5, 7, 13} , n ≥ 1

}
,

S2 = {
pn11 pn22 : p1 ∈ {2, 3, 5} , p2 ∈ {3, 5, 7, 13} , p1 	= p2, p1 p2 < 40, n1, n2 ≥ 1

}
,

S3 = {
pn11 pn22 pn33 : p1 = 2, p2 ∈ {3, 5} , p3 ∈ {5, 7, 13} , p2 + p3 < 17, n1, n2, n3 ≥ 1,

}
,

where p1, p2, and p3 are mutually distinct primes.

In Sect. 4, in (14),(16),(18) we give the precise form of these eta-quotients which
we denote by ΔN ,12.

Using functions ΔN ,12, Δ, and ΔN , we construct a map from X0(N ) to the projec-
tive plane P2, namely

az 
→ (ΔN ,12(z) : Δ(z) : Δ(Nz)) (1)
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and prove that in some cases this map is a birational equivalence. We believe that this
map is birational equivalence in all cases and have some numerical results that support
this claim but have not proved it yet.

Theorem 2 Assume one of the following:

(i) N ∈ S1 and ΔN ,12 is defined as in (14),
(ii) N has the form 2n3m, 2n5m, 2n13m, or 3n5m and ΔN ,12 is defined as in (16),
(iii) N = 2n13n27n3 for n1, n2, n3 ≥ 1 and ΔN ,12 is defined as in (18).

The modular curve X0(N ) is birationally equivalent to the curve

C(ΔN ,12,Δ,ΔN ) ⊆ P
2,

which has degree equal to

dim M12(Γ0(N )) + g(Γ0(N )) − 2 = N
∏
p|N

p prime

(1 + 1/p) − 1.

We give a table of some equations for the curves C(ΔN ,12,Δ,ΔN ).

2 Preliminaries

The group Γ0(N ) is a modular group, i.e., a subgroup of

Γ (1) = SL2(Z)

of finite index which is equal to the value of the Dedekind Psi function

[Γ (1) : Γ0(N )] = N
∏
p|N

(1 + 1/p) = Ψ (N ). (2)

The group Γ0(N ) has
∑

0<d|N φ((d, N/d)) cusps. As a set of representatives of
inequivalent cusps we can take the set

CN =
{ a

d
: d|N , (a, d) = 1, a ∈ (Z/kZ)∗ for k = (d, N/d)

}
. (3)

There are Φ((d, N/d)) cusps with denominator d, for each divisor d of N . There
are always two cusps for Γ0(N ), for every N : one cusps with denominator 1 which
we denote 0 and one cusp with denominator N which we denote as cusp ∞.

The Dedekind eta-function is defined by the infinite product

η(z) = q
1
24

∞∏
n=1

(1 − qn), z ∈ H, q = q(z) := e2π i z .
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An eta-quotient of level N is a finite product of the form

f (z) =
∏
δ|N

η(δz)rδ , rδ ∈ Z.

Every eta-quotient is a holomorphic function of the upper half plane with no zeroes
on the upper half plane.

The most famous example is the Ramanujan delta function,

Δ(z) = η(z)24 =
∞∑
n=1

τ(n)qn,

which is a cusp form of weight 12 on Γ (1). Let us denote

ΔN (z) := Δ(Nz).

We have

Δ,ΔN ∈ M12(Γ0(N )), for all N ,

so there are always two eta-quotients of weight 12 on Γ0(N ).
Eta-quotients have somebeautiful properties. Theyhave integral Fourier expansions

at the cusp ∞, using their modular transformation properties, we can calculate their
Fourier expansions at other cusps (see [6]).

Ligozat in [7], Proposition 3.2.8 proved the formula for the order of vanishing of
an eta-quotient at the cusps with denominator d:

N

24

∑
δ|N

(δ, d)2rδ
(N , d2)δ

. (4)

Using modular transformation properties of the Dedekind eta-function, see [1],
Theorem 3.4, we can deduce the modular transformation properties of eta-quotients.
This result in various forms can be found in [13], Theorem 1.64, [7], Proposition 3.2.1,
or [12] Theorem 1.

For a divisor δ of N , we denote by δ′ the number δ′δ = N .

Theorem 3 If

(1)
∑
δ|N

δrδ ≡ 0 (mod 24),

(2)
∑
δ|N

δ′rδ ≡ 0 (mod 24),

(3)
∏
δ|N

δ′rδ is a square of a rational number,

then
∏
δ|N

η(δz)rδ is a weakly holomorphic modular form on Γ0(N ) of weight

k = 1
2

∑
δ rδ .
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If we require that

(4) N
24

∑
δ|N

(δ,d)2rδ
(N ,d2)δ

≥ 0, for all divisors d of N ,

then
∏
δ|N

η(δz)rδ is a modular form on Γ0(N ) of weight k = 1
2

∑
δ rδ .

The conditions (4) in Theorem 3 can be written in matrix form. Let

AN =
(
N (δ, d)2

(N , d2)δ

)
d,δ

(5)

with d, δ running over the divisors of N . This is a square matrix of size σ0(N ), where
σ0(N ) is the number of positive divisors of N . This matrix is called the order matrix,
[3]. If we write the exponents rδ of an eta-quotient

∏
δ|N η(δz)rδ as a column vector

in increasing order

r = (rδ)δ,

then the condition (4) states that the entries of the vector AN r are non-negative.
The matrix AN is invertible overQ for every N and if the prime factorisation of N

is N = pn11 · · · pnss , then the matrix AN is the Kronecker product, see [2], Proposition
1.41,

AN = Ap
n1
1

⊗
· · ·

⊗
Apnss . (6)

3 Maps X0(N) → P
2 via modular forms

Let us describe the construction of a map from the modular curve to the projective
plane.

Let k ≥ 2 be an even integer such that dim Mk(Γ0(N )) ≥ 3. For our purposes, we
assume that k is even but it can also be an odd number greater than 3.

Let f, g, h ∈ Mk(Γ0(N )) be three linearly independent modular forms. Let us
denote by az the image of z ∈ H under the canonical projection H → X0(N ).

We construct the holomorphic map ϕ : X0(N ) → P
2 which is uniquely determined

by

ϕ(az) = ( f (z) : g(z) : h(z)), (7)

with az in the complement of the finite set of Γ0(N )-orbits of common zeros of f , g,
and h.

Every compact Riemann surface can be observed as a smooth irreducible projective
curve over C, and functions g/ f and h/ f are rational functions on X0(N ). Thus, the
map ϕ is actually a rational map

az 
→ (1 : g(z)/ f (z) : h(z)/ f (z)).
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Since X0(N ) is smooth, the map is regular and the image is an irreducible curve in
P
2. The image is not constant because the functions f, g, and h are linearly indepen-

dent.
The image of the map (7) is, in most cases, a singular, projective plane curve, which

we denote by

C( f, g, h).

The field of rational functions of the curve C( f, g, h), denoted by C(C( f, g, h)), is
isomorphic to a subfield of C(X0(N )), the field of rational functions of the modular
curve X0(N ). By definition, the degree of the map ϕ, which will be denoted by

d( f, g, h),

is equal to the degree of the field extension

d( f, g, h) = [C(X0(N )) : C(C( f, g, h))].

For a meromorphic function f on a Riemann surface X , we can define its divisor
of poles by

div∞( f ) =
∑
a∈X

νa( f )<0

(−νa( f )) · a,

where νa( f ) denotes the order of the function f at the point a ∈ X . This is a positive
divisor on X . As for every divisor on a compact Riemann surface, we define its degree
by

deg(div∞( f )) =
∑
a∈X

div∞( f )(a).

There is a simple criterion for the map ϕ to be of degree, 1 i.e., to be a birational
equivalence. It can be found in [16], Lemma 1 or [11], Lemma 5-2.

Lemma 1 The degree d( f, g, h) of the map (7) divides the numbers

deg(div∞(g/ f )) and deg(div∞(h/ f )). (8)

A sufficient condition for themapϕ to be a birational equivalence is that these numbers
are relatively prime,

gcd(deg(div∞(g/ f )), deg(div∞(h/ f ))) = 1. (9)

Let us define the divisor of a modular form and its degree.
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Let f ∈ Mk(Γ0(N )), f 	= 0. For each a ∈ X0(N ), we can define the order of
vanishing νa( f ) of f at a. This number can be rational when a is an elliptic point,
otherwise it is integral.

We define the divisor of f as

div( f ) =
∑

a∈X0(N )

νa( f ) · a.

Its degree is

deg(div( f )) =
∑

a∈X0(N )

νa( f ).

The degree of the divisor of a modular form in Mk(Γ0(N )) equals

deg(div( f )) = k(g(Γ0(N )) − 1) + k

2

⎛
⎝ν∞(Γ0(N )) +

∑
a∈X0(N ), elliptic

(1 − 1/ea)

⎞
⎠ ,

where g(Γ0(N )) is the genus of X0(N ); ν∞(Γ0(N )) is the number of inequivalent
cusps; and ea is the index of ramification at an elliptic point a, as can be found in [8],
Theorem 2.3.3.

By subtracting the possible non-integer parts of contributions at elliptic points, we
obtain an integral divisor D f attached to the modular form f ∈ Mk(Γ0(N )), defined
by

D f =
∑

a∈X0(N )

[ν f (a)] · a,

where [x] denotes the largest integer ≤ x , and it has the following degree (see [9],
Lemma 4-1 or [8], Thm. 2.5.2)

deg D f = dim Mk(Γ0(N )) + g(Γ0(N )) − 1. (10)

For more details on divisors of modular forms and attached integral divisors, we
refer to [9, Sect. 4] and [8, Sect. 2.3].

The formula for the genus of X0(N ) satisfies (see [8, Theorem 4.2.11])

g(Γ0(N )) = 1 + [Γ (1) : Γ0(N )]

12
− ν2(Γ0(N ))

4
− ν3(Γ0(N ))

3
− ν∞(Γ0(N ))

2
,

where ν j (Γ0(N )) stands for the number of inequivalent elliptic points of order j , for
j = 2, 3, and the formula for the dimension of M12(Γ0(N )) ( see [8, Theorem 2.5.2])
is

dim M12(Γ0(N )) = 11(g(Γ0(N )) − 1) + 3ν2(Γ0(N )) + 4ν3(Γ0(N )) + 6ν∞(Γ0(N )).
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A simple computation yields the formula

dim M12(Γ0(N )) + g(Γ0(N )) − 1 = [Γ (1) : Γ0(N )] . (11)

The following formula, which we now state for the case of the modular group
Γ0(N ), is proved in [11, Corollary 3.7].

Theorem 4 Assume k ≥ 2 is an even integer such that dim Mk(Γ0(N )) ≥ 3. Let
f, g, h ∈ Mk(Γ0(N )) be linearly independent and ϕ the map in (7). Then:

d( f, g, h) deg C( f, g, h) = dim Mk(Γ0(N )) + g(Γ0(N )) − 1

−
∑

a∈X0(N )

min(D f (a), Dg(a), Dh(a)), (12)

where deg C( f, g, h) is the degree of the plane curve C( f, g, h) (the degree of its
defining polynomial) and D f , Dg, and Dh are the integral divisors attached to the
modular forms f, g, and h.

If we compute the degree of the curve C( f, g, h), which can be done by computation
with the Fourier coefficients of f, g, and h (a method that can only be performed for
small values of N ), using the formula (12) we can calculate the degree of the map.

4 Eta-quotients of weight 12 and models of X0(N)

Let us denote by ΔN ,12 the unique eta-quotient

ΔN ,12(z) =
∏
δ|N

η(δz)rδ ,

which is a modular form in M12(Γ0(N )) and only vanishes at the infinity cusp of
Γ0(N ).

For which N such function exists? We first will look at three cases, depending on
the number of prime factors of N .

In the first case, when N = pn with p a prime number, we define a set

S1 = {
pn : p ∈ {2, 3, 5, 7, 13} , n ≥ 1

}
. (13)

For N = pn ∈ S1, let us look at the following eta-quotient:

FN (z) := η(pnz)pr

η(pn−1z)r
, with r = 24

p − 1
. (14)
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Now we check that these functions are modular forms and compute their order of
vanishing at infinity by checking the conditions of Theorem 3. We have

∑
δ|N

δrδ = −pn−1r + pn(24 + r) = pn−1((p − 1)r + 24p) = 24(p + 1)pn−1.

Order of FN at the cusp∞ is 1/24
∑

δ δrδ = (p+1)pn−1 andwe see that this function
has maximal order at the cusp ∞ by the valence theorem since the index of Γ0(pn) in
Γ (1) equals (p + 1)pn−1. The other conditions are also satisfied (orders at all other
cusps must be equal to zero):

∑
δ|N

δ′rδ = −pr + 24 + r = 24

p − 1
(1 − p) + 24 = 0 (order at the cusp 0 equals 0)

∏
δ|N

δrδ = p−r(n−1) pn(24−r) = p−2rn+r+24n is a square of an integer because r is even

∑
δ|N

rδ = −r + 24 + r = 2 · 12.

We check the conditions (4) of Theorem 3 to see that this function is a modular
form. First, if d = pi with i < n, we have

∑
δ|N

(δ, d)2rδ
δ

= (pn, pi )2

pn
24p

p − 1
+ (pn−1, pi )2

pn−1

−24

p − 1

= 24

pn−1(p − 1)
· (p2i − p2i ) = 0,

and in the case d = pn we have

∑
δ|N

(δ, d)2rδ
δ

= (pn, pn)2

pn
24p

p − 1
+ (pn−1, pn)2

pn−1

−24

p − 1

= 24

pn−1(p − 1)
· (p2n − p2(n−1))

= 24

p − 1
· p2(p2 − 1) ≥ 0,

since p ≥ 2. We conclude that FN ∈ M12(Γ0(pn)), and so

FN = ΔN ,12

for N ∈ S1.
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In the second case N = pn11 pn22 , i.e., N has two distinct prime factors. Let

S2 = {
pn11 pn22 : p1 ∈ {2, 3, 5} , p2 ∈ {3, 5, 7, 13} ,

p1 	= p2, p1 p2 < 40, n1, n2 ≥ 1
} (15)

and

GN (z) := η(pn1−1
1 pn2−1

2 z)rη(pn11 pn22 z)p1 p2r

η(pn11 pn2−1
2 z)p1rη(pn1−1

1 pn22 z)p2r
(16)

for N ∈ S2 with

r = 24

(p1 − 1)(p2 − 1)
.

We check the conditions of the Theorem 3:

∑
δ|N

δrδ = pn1−1
1 pn2−1

2 r(1 + p21 p
2
2 − p21 − p22)

= pn1−1
1 pn2−1

2
24

(p1 − 1)(p2 − 1)
(p1 + 1)(p1 − 1)(p2 + 1)(p2 − 1)

= 24pn1−1
1 pn2−1

2 (p1 + 1)(p2 + 1).

Order at the cusp ∞ equals 1/24
∑

δ δrδ = pn1−1
1 pn2−1

2 (p1 + 1)(p2 + 1) which is
the maximal order of the zero by the valence theorem since the index of Γ0(p

n1
1 pn22 )

is pn1−1
1 pn2−1

2 (p1 + 1)(p2 + 1). Order at all other cusps must be equal to zero. The
remaining conditions are

∑
δ|N

δ′rδ = p1 p2r + p1 p2r − p1 p2r − p1 p2r = 0,

∑
δ|N

rδ = r(1 + p1 p2 − p1 − p2) = 24,

∏
δ|N

δ′rδ = (p1 p2)
r p−p1r

2 p−p2r
1

= p
−24
p1−1

1 p
−24
p2−1

2 .

We have p1, p2 ∈ {2, 3, 5, 7, 13}, so the numbers −24
p1−1 and −24

p2−1 are even, and we
see that

∏
δ|N

δ′rδ is a square of a rational number.

We omit the calculations for conditions (4) but they can be easily checked.
Thus we proved that GN ∈ M12(Γ0(p

n1
1 pn22 )),

GN = ΔN ,12
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for N ∈ S2 and has a zero of maximal order at the cusp ∞.
In the third case, for N = pn11 pn22 pn33 with three distinct prime factors, we define a

set

S3 = {
pn11 pn22 pn33 : p1 = 2, p2 ∈ {3, 5} , p3 ∈ {5, 7, 13} , p2 + p3 < 17, n1, n2, n3 ≥ 1,

}
, (17)

where p1, p2, and p3 are mutually distinct prime numbers. Furthermore, we look at
the following eta-quotient:

HN (z) = η(pn11 pn2−1
2 pn3−1

3 z)p1rη(pn1−1
1 pn22 pn3−1

3 z)p2rη(pn1−1
1 pn2−1

2 pn33 z)p3rη(pn11 pn22 pn33 z)p1 p2 p3r

η(pn1−1
1 pn2−1

2 pn3−1
3 z)rη(pn11 pn22 pn3−1

3 z)p1 p2rη(pn11 pn2−1
2 pn33 z)p1 p3rη(pn1−1

1 pn22 pn33 z)p2 p3r
(18)

for N ∈ S3, with

r = 24

(p1 − 1)(p2 − 1)(p3 − 1)
.

We check the conditions of Theorem 3.

∑
δ|N

δrδ = pn1−1
1 pn2−1

2 pn3−1
3 r(p21+ p22+ p23+ p21 p

2
2 p

2
3−1− p21 p

2
2− p21 p

2
3− p22 p

2
3)

= 24pn1−1
1 pn2−1

2 pn3−1
3 (p1 + 1)(p2 + 1)(p3 + 1).

Order at the cusp ∞ equals the index of the subgroup Γ0(p
n1
1 pn22 pn33 ) so this

function has zero of maximal order of vanishing at the cusp ∞. Let us check the other
conditions:

∑
δ|N

δ′rδ = 0,

∑
δ|N

rδ = r(p1 + p2 + p3 + p1 p2 p3 − 1 − p1 p2 − p2 p3 − p1 p3) = 24,

∏
δ|N

δ′rδ = (p2 p3)
p1r (p1 p3)

p2r (p1 p2)
p3r (p1 p2 p3)

−r p−p1 p2r
3 p−p1 p3r

2 p−p2 p3r
1

= p
−24

(p1−1)

1 p
−24

(p2−1)

2 p
−24

(p3−1)

3 .

Wehave p1, p2, p3 ∈ {2, 3, 5, 7, 13}, so the numbers −24
p1−1 ,

−24
p2−1 , and

24
(p3−1) are even.

It follows that
∏
δ|N

δ′rδ is a square of a rational number. Simple computation shows that

HN also satisfies the conditions (4) of Theorem 3.
We have proved that HN ∈ M12(Γ0(p

n1
1 pn22 pn33 )) and has maximal order of van-

ishing at the infinity, HN = ΔN ,12.
Now we prove that these are the only cases when that unique modular form with

maximal order of vanishing at infinity is an eta-quotient.
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Theorem 5 The unique normalized modular form f (z) of weight 12 for Γ0(N )which
vanishes only at the infinity cusp is an eta-quotient if and only if N belongs to one of
the sets S1, S2, or S3 defined above and f (z) is equal to the corresponding function
FN (z),GN (z), or HN (z).

Proof Let
∏

δ|N η(δz)rδ be an eta-quotient ofweight 12 forΓ0(N )which only vanishes
at infinity. This means that order at all other cusps must be equal to zero, and the order
at infinity, whose value is given by the left hand-side of the first expression in Theorem
3 is equal to [Γ (1) : Γ0(N )] = Ψ (N ), see (2). To determine this eta-quotient is to
find the exponents rδ . To write these conditions in more computable manner, we will
write the exponents as a column vector r = (rδ)δ and use the order matrix AN , (5).

We have the following matrix equation:

AN r =
(
0, . . . , 0, 24 · pn1−1

1 · · · pns−1
s (p1 + 1) · · · (ps + 1)

)�
,

i.e., vector r is the product

A−1
N

(
0, . . . , 0, 24 · pn1−1

1 · · · pns−1
s (p1 + 1) · · · (ps + 1)

)�
. (19)

For a prime number p, matrix Apn is a square matrix of size (n + 1) × (n + 1),
where the element in i-th row and j-th column is given by

Apn (i, j) = pn− j+2min{i, j}−min{n,2i}, 0 ≤ i, j ≤ n,

and its inverse is given by

pn−1(p2−1) · A−1
pn (i, j) =

⎧⎪⎪⎨
⎪⎪⎩

p, if i = j = 0 or i = j = n,

−pmin{ j,n− j}, if |i − j | = 1,
pmin{ j−1,n− j−1}(p2 + 1), if 0 < i = j < n,

0, otherwise.

Let N = pn11 . . . pnss , p1 < p2 < · · · < ps be the prime factorization of N . The
matrix A−1

N is the Kronecker product of inverses of matrices Ap
ni
i
, see (6). The last

column of A−1
N has 2s elements different from 0. First non-zero entry is

(−1)s24

pn1−1
1 · · · pns−1

s (p21 − 1) · · · (p2s − 1)

and from (19) we get the equation

r
p
n1−1
1 ···pns−1

s
= (−1)s24

(p1 − 1) · · · (ps − 1)
.

The condition r
p
n1−1
1 ···pns−1

s
∈ Z implies s < 4.
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When s = 1, from (19) we have equations

r1 = rp = · · · = rpn−2 = 0,

rpn−1 = −24

p − 1
,

rpn = 24p

p − 1
.

The condition rpn−1 ∈ Z implies p = 2, 3, 5, 7, 13, i.e., N ∈ S1.
For s = 2 we have equations

rpi q j = 0, for i < n − 1 or j < m − 1,

rpn−1qm−1 = 24

(p − 1)(q − 1)
= x,

rpn−1qm = −qx,

rpnqm−1 = −px,

rpnqm = pqx .

The condition rpn−1qm−1 ∈ Z implies that N must belong to S2.
For s = 3 we have

rpi q j rk = 0, for i < n − 1 or j < m − 1 or k < l − 1,

rpn−1qm−1rl−1 = −24

(p − 1)(q − 1)(r − 1)
= x,

rpnqm−1rl−1 = −px, rpn−1qmrl−1 = −qx, rpn−1qm−1rl = −r x,

rpn−1qmrl = qrx, rpnqm−1rl = prx, rpnqmrl−1 = pqx,

rpnqmrl = −pqrx .

From the condition rpn−1qm−1rl−1 ∈ Z we have the following possible values

(p, q, r) = (2, 3, 5), (2, 3, 7), (2, 3, 13), (2, 5, 7)

so N must belong to S3. The theorem is proved. ��
Now we use these functions to construct maps X0(N ) → P

2. The divisor of the
function ΔN ,12 from Theorem 5 with respect to the group Γ0(N ) is

div(ΔN ,12) = [Γ (1) : Γ0(N )] a∞ = N
∏
p|N

(1 + 1/p)a∞. (20)

The divisors of functions Δ, ΔN with respect to Γ0(N ) are given by [11], Lemma 4-2
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div(Δ) =
∑

c/d∈CN

N

d(d, N/d)
a c

d
,

div(ΔN ) =
∑

c/d∈CN

d

(d, N/d)
a c

d
. (21)

We look at the map X0(N ) → P
2 given by (1).

az 
→ (ΔN ,12(z) : Δ(z) : Δ(Nz)).

Theorem 6 Assume one of the following:

(i) N ∈ S1 and ΔN ,12 is the function in (14),
(ii) N has the form 2n3m, 2n5m, 2n13m, or 3n5m and ΔN ,12 is the function in (16),
(iii) N = 2n13n27n3 for n1, n2, n3 ≥ 1 and ΔN ,12 is the function in (18).

Then the modular curve X0(N ) is birationally equivalent to the curve

C(ΔN ,12,Δ,ΔN ) ⊆ P
2,

which has degree equal to

dim M12(Γ0(N )) + g(Γ0(N )) − 2 = Ψ (N ) − 1.

Proof We will look at these three cases separately although the argument is the same.
To prove birational equivalence we use Lemma 1.

Case (i): From (20) and (21) we have

deg

(
div∞

(
Δ

Δpn ,12

))
= pn−1(p + 1) − 1

deg

(
div∞

(
Δpn

Δpn ,12

))
= pn−1(p + 1 − p) = pn−1.

Non-trivial divisors of the second number do not divide the first if n > 1 so
these two numbers are relatively prime for n > 1.

From Lemma 1 it follows that the map is a birational equivalence. Since

min(DΔ(a), DΔN ,12(a), DΔN (a)) = 0

for a ∈ X0(N ) \ {∞} and

min(DΔ(∞), DΔN ,12(∞), DΔN (∞)) = 1,

from the formula (12) we can calculate the degree of the image curve and it equals
dim M12(Γ0(N )) + g(Γ0(N )) − 1 − 1. Formula (11) implies this number equals
pn−1(p + 1) − 1.
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Case (ii): From (20) and (21) it follows that

deg

(
div∞

(
Δ

ΔN ,12

))
= pn−1qm−1(p + 1)(q + 1) − 1

deg

(
div∞

(
ΔN

ΔN ,12

))
= pn−1qm−1((p + 1)(q + 1) − pq)

= pn−1qm−1(p + q + 1).

These numbers are relatively prime if numbers (p+q+1) and pn−1qm−1(p+1)(q+
1) − 1 are relatively prime. We check all possible cases:

– Let N = 2n3m . Then 2+ 3+ 1 = 6 and 2 and 3 are prime divisors of 6. But these
two numbers do not divide 2n−1 · 3m−1 · 3 · 4 − 1.

– Let N = 2n5m . Then 2+5+1 = 8 has one prime divisor 2 which does not divide
2n−15m−1 · 3 · 6 − 1.

– Let N = 2n13m . Then 2 + 13 + 1 = 16 has one prime divisor 2 which does not
divide 2n−1 · 13m−1 · 3 · 14 − 1.

– Let N = 3n5m . Then 3+5+1 = 9 has one prime divisor 3 which does not divide
3n−1 · 5m−1 · 4 · 6 − 1.

From Lemma 1 we have birational equivalence of X0(N ) and C(ΔN ,12,Δ,ΔN ).

Case (iii): From (20) and (21) we have

deg

(
div∞

(
Δ

ΔN ,12

))
= 2n1−13n2−17n3−1 · 3 · 4 · 8 − 1,

deg

(
div∞

(
ΔN

ΔN ,12

))
= 2n1−13n2−17n3−1(3 · 4 · 8 − 2 · 3 · 7),
= 2n1−13n2−17n3−1 · 54.

Prime divisors of deg
(
div∞

(
ΔN

ΔN ,12

))
belong to the set {2, 3, 7}. None of the numbers

from this set divides the number deg
(
div∞

(
Δ

ΔN ,12

))
. These numbers are relatively

prime, so by Lemma 1 we conclude that the map defined by functions ΔN ,12,Δ, and
ΔN is birational equivalence. The theorem is proved. ��

It is our conjecture that the map

az 
→ (ΔN ,12(z) : Δ(z) : ΔN (z))

is birational equivalence for all functions ΔN ,12 from Theorem 5 but the argument
with divisors of poles is satisfied only in the mentioned cases. In other cases, divisors
of poles of functions used are not relatively prime.

As an example, for N = 2371 = 56 we have

deg

(
div∞

(
Δ

Δ56,12

))
= 95,
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Table 1 Equations for curves C(ΔN ,12, Δ, ΔN ) from Theorem 6

N = 2 x0x1 − x22
N = 3 x20 x1 − x32
N = 4 x30 x

2
1 + 4096x30 x1x2 + 48x20 x1x

2
2 − x52

N = 5 x40 x1 − x52
N = 7 x60 x1 − x72
N = 9 x80 x

3
1 + 531441x80 x

2
1 x2 + 282429536481x80 x1x

2
2 + 27894275208x70 x1x

3
2

−756x60 x
2
1 x

3
2 + 975725676x60 x1x

4
2 + 14171760x50 x1x

5
2

+74358x40 x1x
6
2 + 72x30 x1x

7
2 − x112

N = 13 x120 x1 − x132

deg

(
div∞

(
Δ56

Δ56,12

))
= 40.

However, we have developed an algorithm that calculates the degree of the resulting
curve and with the aid of formula (12) we calculated that in this case the degree of the
map equals 1.

At the end, we present some equations for the curves C(ΔN ,12,Δ,ΔN ) in Table 1:
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